Kimia XI

Afinitas elektron pertama
Energi ionisasi selalu ditekankan pada pembentukan ion positif. Afinitas elektron ditekankan pada ion negatif, dan keduanya banyak dipakai untuk unsur-unsur pada golongan 6 dan 7 pada tabel periodik.
Mendefinisikan afinitas elektron pertama
Afinitas elektron pertama adalah energi yang dilepaskan ketika 1 mol atom gas mendapatkan satu elektron untuk membentuk 1 mol ion gas 1-.
Lebih mudah dipahami dalam bentuk simbol.
Pada penggambaran di atas, afinitas elektron pertama diartikan sebagai energi yang dilepaskan (per mol X) pada saat perubahan ini terjadi.
Afinitas elektron pertama memiliki harga negatif. Sebagai contoh, afinitas elektron pertama klor adalah -349 kJ mol-1. Berdasarkan perjanjian, tanda negatif menunjukkan pelepasan energi.
Afinitas elektron pertama dari unsur-unsur golongan 7
F-328 kJ mol-1
Cl-349 kJ mol-1
Br-324 kJ mol-1
I-295 kJ mol-1
Apakah ada polanya?
Ya − jika anda bergerak dari atas ke bawah dalam satu golongan, afinitas elektron pertama makin berkurang (artinya energi yang dilepaskan makin berkurang ketika ion negatif terbentuk). Fluor tidak mengikuti aturan itu, dan akan dijelaskan secara terpisah.
Afinitas elektron dihitung dari tarikan antara elektron yang datang dengan inti − tarikan yang lebih kuat, energi yang dilepaskan makin besar.
Faktor yang mempengaruhi tarikan ini sama dengan faktor yang berpengaruh pada energi ionisasi − muatan inti, jarak dan penyaringan (screening).
Bertambahnya muatan inti dari atas ke bawah dalam satu golongan terkurangi oleh tambahan penyaringan elektron. Masing-masing elektron terluar mengalami tarikan 7+ dari pusat atom, untuk semua atom golongan 7.
Sebagai contoh, atom fluor memiliki struktur elektron 1s22s22px22py22pz1. Terdapat 9 proton dalam inti.
Elektron yang datang masuk ke tingkat-2, dan mengalami penyaringan dari inti oleh 2 elektron 1s2 electrons. Oleh karena itu tarikan bersih dari inti adalah 7+ (9 proton dikurangi 2 oleh penyaringan elektron).
Berbeda dengan klor yang memiliki struktur elektron 1s22s22p63s23px23py23pz1. Klor memiliki 17 proton pada inti.
Tetapi sekali lagi elektron yang masuk merasakan tarikan bersih dari inti 7+ (17 proton dikurangi 10 oleh penyaringan elektron pada tingkat pertama dan kedua).
Faktor yang menentuka n adalah bertambahnya jarak antara elektron yang datang dengan inti dari atas ke bawah dalam satu golongan. Makin besar jarak, tarikan berkurang dan energi yang dilepaskan sebagai afinitas elektron juga berkurang.
Mengapa fluor tidak mengikuti kecenderungan yang ada?
Elektron yang datang, pada fluor akan lebih dekat dengan inti dibandingkan unsur lain, sehingga anda akan mendapatkan nilai afinitas elektron yang tinggi.
Namun demikian, karena fluor merupakan atom kecil, anda memasukkan elektron baru pada tempat yang sudah penuh sesak oleh elektron dan ada banyak tolakan. Tolakan ini mengurangi tarikan yang dirasakan elektron yang datang dan mengurangi afinitas elektron.
Perubahan yang sama dari kecenderungan yang diharapkan terjadi antara oksigen dan sulfur pada golongan 6. Afinitas elektron pertama oksigen (-142 kJ mol-1) lebih kecil dari sulfur (-200 kJ mol-1) untuk alasan yang sama bahwa fluor lebih kecil dari klor.
Membandingkan afinitas elektron golongan 6 dan 7
Seperti yang anda perhatikan, afinitas elektron pertama oksigen (-142 kJ mol-1) lebih rendah dari fluor (-328 kJ mol-1). Sama dengan sulfur (-200 kJ mol-1) yang lebih rendah dari klor (-349 kJ mol-1). Mengapa?
Sederhana saja, unsur golongan 6 memiliki 1 proton pada inti yang lebih sedikit daripada tetangganya, golongan 7. Banyaknya penyaringan pada keduanya sama.
Itu artinya bahwa tarikan bersih dari inti pada golongan 6 lebih sedikit daripada golongan 7, sehingga afinitas elektron lebih rendah.
Afinitas elektron pertama dan reaktivitas
Reaktivitas unsur golongan 7 turun dari atas ke bawah dalam satu golongan − fluor merupakan unsur yang paling reaktif dan iod paling tak reaktif.
Seringkali pada reaksinya unsur-unsur ini membentuk ion negatif. Pada GCSE kadang-kadang ditunjukkan penurunan reaktivitas karena tarikan terhadap elektron yang datang berkurang kekuatannya dari atas ke bawah dalam satu golongan, sehingga pembentukan ion negatif kurang disukai. Penjelasan itu masih dapat diterima kecuali untuk fluor!
Reaksi keseluruhan terdiri dari banyak tahapan yang berbeda yang semuanya melibatkan perubahan energi, dan untuk menjelaskan kecenderungan yang ada tidak cukup hanya dengan mengamati salah satu tahap saja. Fluor lebih reaktif daripada klor (walaupun afinitas elektronnya lebih rendah) karena energi yang dilepaskan pada salah satu langkah reaksinya mengurangi energi yang dilepaskan sebagai afinitas elektron.
Afinitas elektron kedua
Anda hanya akan ditunjukkan pada unsur golongan 6, oksigen dan sulfur yang keduanya membentuk ion 2-.
Mendefinisikan afinitas elektron kedua
Afinitas elektron kedua adalah energi yang diperlukan untuk menambah satu elektron pada masing-masing ion dari 1 mol ion gas 1- untuk menghasilkan 1 mol ion gas 2-.
Lebih mudah dipahami dalam bentuk simbol.
Pada penggambaran di atas, afinitas elektron kedua diartikan sebagai energi yang dibutuhkan untuk membawa perubahan per mol X-.
Mengapa untuk melakukannya diperlukan energi?
Anda mendorong elektron ke dalam ion negatif. Hal ini tidak terjadi dengan serta-merta!
EA ke-1 = -142 kJ mol-1
EA ke-2 = +844 kJ mol-1
Tanda positif menunjukkan bahwa anda memerlukan energi untuk terjadinya perubahan ini. Afinitas elektron kedua oksigen tinggi, karena elektron dipaksa masuk ke dalam ion yang kecil, elektronnya sangat rapat.

Apakah yang dimaksud dengan spektrum emisi?
Mengamati spektrum emisi hidrogen
Tabung sinar hidrogen adalah suatu tabung tipis yang berisi gas hidrogen pada tekanan rendah dengan elektroda pada tiap-tiap ujungnya. Jika anda melewatkan tegangan tinggi (katakanlah, 5000 volt), tabung akan menghasilkan sinar berwarna merah muda yang terang.
Jika sinar tersebut dilewatkan pada prisma atau kisi difraksi, sinar akan terpecah menjadi beberapa warna. Warna yang dapat anda lihat merupakan sebagian kecil dari spektrum emisi hidrogen. Sebagian besar spektrum tak terlihat oleh mata karena berada pada daerah infra-merah atau ultra-violet.
Pada foto berikut, sebelah kiri menunjukkan bagian dari tabung sinar katoda, dan sebelah kanan menunjukkan tiga garis yang paling mudah dilihat pada daerah tampak (visible) dari spektrum. (mengabaikan "pengotor" − biasanya berada di sebelah kiri garis merah, yang disebabkan oleh cacat pada saat foto diambil. Lihat catatan di bawah)
Memperlebar spektrum emisi hidrogen hingga UV dan IR
Ada lebih banyak lagi spektrum hidrogen selain tiga garis yang dapat anda lihat dengan mata telanjang. Hal ini memungkinan untuk mendeteksi pola garis-garis pada daerah ultra-violet dan infra-merah spektrum dengan baik.
Hal ini memunculkan sejumlah "deret" garis yang dinamakan dengan nama penemunya. Gambar di bawah menunjukkan tiga dari deret garis tersebut, deret lainnya berada di daerah infra-merah, jika digambarkan terletak di sebelah kiri deret Paschen.
Gambar tersebut cukup rumit, sehingga kita akan membahasnya sedikit saja. Pertama lihat deret Lyman pada sebelah kanan gambar − deret ini paling lebar dan paling mudah diamati.
Deret Lyman merupakan deret garis pada daerah ultra-violet. Perhatikan bahwa garis makin merapat satu sama lain dengan naiknya frekuensi. Akhirnya, garis-garis makin rapat dan tidak mungkin diamati satu per satu, terlihat seperti spektrum kontinu. Hal itu tampak sedikit gelap pada ujung kanan tiap spektrum.
Kemudian pada titik tertentu, disebut sebagai deret limit (limit series), deret terhenti.
Jika anda melihat deret Balmer atau Paschen, anda akan melihat polanya sama, tetapi deretnya menjadi makin dekat. Pada deret Balmer, perhatikan posisi tiga garis yang tampak pada foto di bagian atas.
Sesuatu yang mempersulit − frekuensi dan panjang gelombang
Anda akan sering mendapatkan spektrum hidrogen dinyatakan dengan panjang gelombang sinar bukan frekuensi. Sayangnya, karena hubungan matematika antara frekuensi sinar dan panjang gelombangnya, anda mendapatkan dua gambaran spektrum yang sangat berbeda jika mengalurkannya terhadap frekuensi atau panjang gelombang.
Hubungan antara frekuensi dan panjang gelombang
Hubungan matematisnya:
Pengaturan ulang persamaan tersebut akan menghasilkan persamaan baik untuk panjang gelombang maupun frekuensi.
Apakah ini berarti ada hubungan kebalikan antara keduanya − frekuensi yang tinggi berarti panjang gelombangnya rendah dan sebaliknya.< /p>
Menggambarkan spektrum hidrogen berdasarkan panjang gelombang
Seperti inilah spektrum yang terlihat jika anda mengalurkannya berdasarkan panjang gelombang bukan frekuensi:
dan, hanya untuk mengingatkan anda bahwa spektrum berdasarkan frekuensi akan tampak seperti ini:
Apakah ini membingungkan? baik, menurut saya ini sangat membingungkan! Jadi apa yang anda lakukan dengan hal ini?
Untuk halaman berikutnya saya hanya akan memperlihatkan spektrum yang dialurkan terhadap frekuensi, karena lebih mudah untuk menghubungkannya dengan apa yang terjadi dalam atom. Hati-hati, spektrum akan terlihat berbeda tergantung pada bagaimana spektrum tersebut dialurkan, tetapi, selain itu, abaikan versi panjang gelombang, kecuali pengujimu menghendakinya. Jika anda mencoba untuk mengetahui kedua versi, anda hanya akan mendapatkan sesuatu yang membingungkan!
Menjelaskan spektrum emisi hidrogen
Persamaan Balmer dan Rydberg
Dengan sedikit pengetahuan matematika yang mengagumkan, pada 1885 Balmer memberikan rumus sederhana untuk memperkirakan panjang gelombang dari beberapa garis yang sekarang kita kenal dengan deret Balmer. Tiga tahun berikutnya, Rydberg membuat rumus yang lebih umum sehingga dapat diterapkan untuk memperkirakan panjang gelombang beberapa garis pada spektrum emisi hidrogen.
Rydberg memberikan rumus:
RH merupakan konstanta yang disebut dengan konstanta Rydberg.
n1 dan n2 merupakan bilangan bulat (seluruh angka). n2 lebih besar daripada n1. Dengan kata lain, jika n1, katakanlah 2, maka n2 dapat berupa seluruh angka antara 3 dan tak hingga.
Berbagai kombinasi angka dapat anda masukkan ke dalam rumus, sehingga anda dapat menghitung panjang gelombang dari suatu garis pada spektrum emisi hidrogen − dan terdapat kesamaan antara panjang gelombang yang anda dapatkan dengan menggunakan rumus ini dengan yang diperoleh dari hasil analisis spektrum aslinya.
Anda dapat juga menggunakan versi yang dimodifikasi dari persamaan Rydberg untuk menghitung frekuensi masing-masing garis. Persamaan yang dimodifikasi dapat anda peroleh dari persamaan sebelumnya dan rumus panjang gelombang dan frekuensi pada bagian sebelumnya.
Asal usul spektrum emisi hidrogen
Garis-garis pada spektrum emisi hidrogen membentuk pola yang umum dan dapat ditunjukkan dengan persamaan yang (relatif) sederhana. Masing-masing garis dapat dihitung dari kombinasi angka-angka sederhana.
Mengapa hidrogen mengemisikan sinar ketika tereksitasi dengan adanya tegangan tinggi dan apa arti dari semua angka-angka itu?
Ketika tak ada yang mengeksitasi, elektron hidrogen berada pada tingkat energi pertama − tingkat yang paling dekat dengan inti. Tetapi jika anda memberikan energi pada atom, elektron akan tereksitasi ke tingkat energi yang lebih tinggi − atau bahkan dilepaskan dari atom.
Tegangan tinggi pada tabung sinar hidrogen menyediakan energi tersebut. Molekul hidrogen awalnya pecah menjadi atom-atom hidrogen (oleh karena itu disebut spektrum emisi atom hidrogen) dan elektron kemudian berpromosi ke tingkat energi yang lebih tinggi.
Misalkan suatu elektron tereksitesi ke tingkat energi ketiga. Elektron akan cenderung melepaskan energi lagi dengan kembali ke tingkat yang lebih rendah. Hal ini dapat dilakukan dengan dua cara yang berbeda.
Elektron dapat turun, kembali lagi ke tingkat pertama, atau turun ke tingkat kedua − dan kemudian, pada lompatan kedua, turun ke tingkat pertama.
Mengikat suatu elektron untuk melompat ke garis tertentu pada spektrum
Jika suatu elektron turun dari tingkat-3 ke tingkat-2, akan melepaskan energi yang sama dengan beda energi antara dua tingkat tersebut. Energi yang diperoleh dari lepasnya elektron ini muncul sebagai sinar (dimana "sinar" tersebut termasuk dalam daerah UV dan IR juga tampak (visible)).
Masing-masing frekuensi sinar dihubungkan dengan energi melalui persamaan:
Dengan frekuensi yang lebih tinggi, energi sinar akan lebih tinggi.
Jika suatu elektron turun dari tingkat-3 ke tingkat-2, tampak sinar merah. Inilah asal-usul garis merah pada spektrum hidrogen. Dengan menghitung frekuensi sinar merah, anda dapat menghitung energinya. Energi itu harus sama dengan beda energi antara tingkat-3 dan tingkat-2 pada atom hidrogen.
Persamaan terakhir dapat ditulis ulang sebagai beda energi antara dua tingkat elektron.
Turunnya elektron yang menghasilkan energi terbesar akan memberikan garis frekuensi tertinggi. Turunnya elektron dengan energi terbesar adalah dari tingkat tak hingga ke tingkat-1 (tentang tingkat tak hingga akan dijelaskan nanti)
Beberapa gambar berikut terdiri dari dua bagian − dengan tingkat energi pada bagian atas dan spektrum pada bagian bawah.
Jika elektron turun dari tingkat 6, penurunannya lebih sedikit, sehingga frekuensinya akan lebih kecil. (dikarenakan skala pada gambar, tidak mungkin menggambarkan semua lompatan yang melibatkan semua tingkat antara 7 dan tak hingga!)
…dan jika anda mengamati lompatan ke tingkat-1 yang lain anda akan mendapatkan seluruh deret Lyman. Jarak antar garis pada spektrum menggambarkan jarak perubahan tingkat energi.
Jika anda melakukan hal yang sama untuk lompatan menurun ke tingkat 2, anda mendapatkan garis dari deret Balmer. Perbedaan energinya lebih kecil dari deret Lyman, sehingga frekuensi yang dihasilkan juga lebih rendah.
Deret Paschen diperoleh dari lompatan menurun ke tingkat-3, tetapi gambarnya akan sangat kacau jika saya memasukkan semuanya – karena itu tidak disebutkan deret lain untuk lompatan menurun ke tingkat-4, tingkat-5, dan seterusnya.
Arti angka −angka pada persamaan Rydberg
n1 dan n2 pada persamaan Rydberg merupakan tingkat energi sederhana pada setiap lompatan yang menghasilkan garis yang khas pada spektrum.
Sebagai contoh, pada deret Lyman, n1 selalu 1. Elektron yang turun ke tingkat 1 menghasilkan garis pada deret Lyman. Untuk deret Balmer, n1 selalu 2, karena elektron turun ke tingkat-2.
n2 merupakan tingkat asal lompatan. Kita telah menyebutkan bahwa garis merah merupakan hasil dari turunnya elektron dari tingkat-3 ke tingkat-2. Pada contoh ini, n2 sama dengan 3.
Arti tingkat tak hingga
Tingkat tak hingga menunjukkan energi tertinggi yang mungkin dari suatu elektron atom hidrogen. Jadi, apa yang terjadi jika elektron melampaui energi itu?
Elektron bukan lagi bagian dari atom. Tingkat tak hingga menunjukkan titik dimana ionisasi atom terjadi untuk membentuk ion bermuatan positif.
Menggunakan spektrum untuk menentukan energi ionisasi
Ketika tak ada energi tambahan yang diberikan, elektron hidrogen berada pada tingkat-1. Dikenal sebagai keadaan dasar (ground state). Jika anda memberikan energi yang cukup untuk memindahkan elektron hingga ke tingkat tak hingga, anda telah mengionkan hidrogen.
Energi ionisasi tiap elektron dihitung dari jarak antara tingkat-1 dan tingkat tak hingga. Jika anda melihat kembali beberapa gambar terakhir, anda akan mendapatkan bahwa energi lompatannya menghasilkan limit deret dari deret Lyman.
Jika anda dapat menentukan frekuensi dari limit deret Lyman, anda dapat menggunakannya untuk menghitung energi yang dibutuhkan untuk memindahkan elektron suatu atom dari tingkat-1 ke titik ionisasi. Dari hal tersebut, anda dapat menghitung energi ionisasi per mol atom.
Masalahnya adalah frekuensi limit deret agak sulit ditentukan secara akurat dari spektrum karena pada daerah limit garis-garisnya rapat sehingga spektrum terlihat seperti kontinu.
Menentukan frekuensi limit deret secara grafik
Berikut ini merupakan daftar frekuensi dari tujuh garis yang jarak garisnya paling lebar pada deret Lyman, jika anda bergerak dari satu garis ke garis berikutnya akan terjadi kenaikan frekuensi.
Dengan makin dekatnya garis, jelas peningkatan frekuensi berkurang. Pada limit deret, beda antar garis akan mendeketi nol.
Itu artinya jika anda mengalurkan kenaikan frekuensi terhadap frekuensi aktual, anda dapat mengekstrapolasikan (kontinu) kurva pada titik dimana kenaikannya menjadi nol. Itu akan menjadi frekuensi limit deret.
Faktanya anda dapat mengalurkan grafik dari data pada tabel di atas. Perbedaan frekuensi berhubungan dengan dua frekuensi. Sebagai contoh, angka 0,457 diperoleh dengan mengurangkan 2,467 dari 2,924. Sehingga yang manakah dari dua nilai ini yang anda alurkan terhadap 0,457?
Hal ini tak masalah, selama anda selalu konsisten − dengan kata lain, anda selalu mengalurkan perbedaan frekuensi terhadap salah satu dari angka yang lebih tinggi atau yang lebih rendah. Pada titik yang akan anda amati (dimana perbedaannya nol), nilai kedua frekuensi sama.
Sebagaimana yang anda lihat pada grafik di bawah. Dengan mengalurkan kedua kurva yang mungkin pada grafik yang sama, kurva akan lebih mudah diekstrapolasikan. Kurva lebih sulit untuk diektrapolasikan dibandingkan dengan garis lurus.
Kedua garis menunjukkan limit deret sekitar 3.28 x 1015 Hz.
Jadi sekarang kita akan menghitung energi yang diperlukan untuk melepaskan elektron tunggal dari atom hidrogen. Ingat persamaan pada halaman di atas:
Kita dapat menentukan perbedaan energi antara keadaan dasar dan titik dimana elektron meninggalkan atom melalui substitusi nilai frekuensi yang kita dapatkan dan mencari nilai konstanta Planck dari buku.
Hasil ini memberikan pada anda energi ionisasi untuk atom tunggal. Untuk menentukan energi ionisasi yang normal, kita perlu mengalikannya dengan banyaknya atom pada satu mol atom hidrogen (konstanta Avogadro) dan kemudian membaginya dengan 1000 untuk mengubahnya menjadi kilojoule.



Mendefinisikan energi ionisasi pertama
Definisi
Energi ionisasi pertama merupakan energi yang diperlukan untuk melepaskan elektron terluar (paling mudah lepas) dari satu mol atom dalam wujud gas untuk menghasilkan satu mol ion gas dengan muatan 1+.
Hal ini lebih mudah dipahami dalam bentuk simbol.
Pada penggambaran di atas, energi ionisasi pertama diartikan sebagai energi yang dibutuhkan untuk menghasilkan perubahan per mol X.
Yang perlu diperhatikan pada persamaan di atas
Simbol wujud zat – (g) – penting. Pada saat anda membahas energi ionisasi, unsurnya harus dalam wujud gas.
Energi ionisasi dinyatakan dalam kJ mol-1 (kilojoules per mole). Nilainya bervariasi dari 381 (yang sangat rendah) hingga 2370 (yang sangat tinggi).
Semua unsur memiliki energi ionisasi pertama – bahkan atom yang tidak membentuk ion positif pada tabung reaksi. Helium (E.I pertama = 2370 kJ mol-1) secara normal tidak membentuk ion positif karena besarnya energi yang diperlukan untuk melepaskan satu elektron.
Pola energi ionisasi pertama pada tabel periodik
20 unsur pertama
Energi ionisasi pertama menunjukkanperiodicity. Itu artinya bahwa energi ionisasi bervarisi dalam suatu pengulangan jika anda bergerak sepanjang tabel periodik. Sebagai contoh, lihatlah pola dari Li ke Ne, dan kemudian bandingkan dengan pola yang sama dari Na ke Ar.
Variasi pada energi ionisasi pertama ini dapat dijelaskan melalui struktur dari atom yang terlibat.
Faktor yang mempengaruhi energi ionisasi
Energi ionisasi merupakan ukuran energi yang diperlukan untuk menarik elektron tertentu dari tarikan inti. Energi ionisasi yang tinggi menunjukkan tarikan antara elektron dan inti yang kuat.
Besarnya tarikan dipengaruhi oleh:
Muatan inti
Makin banyak proton dalam inti, makin positif muatan inti, dan makin kuat tarikannya terhadap elektron.
Jarak elektron dari inti
Jarak dapat mengurangi tarikan inti dengan cepat. Elektron yang dekat dengan inti akan ditarik lebih kuat daripada yang lebih jauh.
Jumlah elektron yang berada diantara elektron terluar dan inti
Perhatikan atom natrium, dengan struktur elektron 2, 8, 1 (tak ada alasan mengapa anda tak dapat menggunakan notasi ini jika ini sangat membantu!)
ika elektron terluar mengarah ke inti, tidak akan terlihat oleh inti dengan jelas. Antara elektron terluar dan inti ada dua lapis elektron pada tingkat pertama dan kedua. Pengaruh 11 proton pada inti natrium berkurang oleh adanya 10 elektron yang lebih dalam. Oleh karena itu elektron terluar hanya merasakan tarikan bersih kira-kira 1+ dari pusat. Pengurangan tarikan inti terhadap elektron yang lebih dalam disebut dengan penyaringan (screening) atau perlindunga (shielding).
Apakah elektron berdiri sendiri dalam suatu orbital atau berpasangan dengan elektron lain
Dua elektron pada orbital yang sama mengalami sedikit tolakan satu sama lain. Hal ini mengurangi tarikan inti, sehingga el ektron yang berpasangan dapat dilepaskan dengan lebih mudah dari yang anda perkirakan.
Menjelaskan pola pada sebagian unsur-unsur pertama
Hidrogen memiliki struktur elektron 1s1. Merupakan atom yang sangat kecil, dan elektron tunggalnya dekat dengan inti sehingga dapat tertarik dengan kuat. Tidak ada elektron yang menyaring tarikan dari inti sehingga energi ionisasinya tinggi (1310 kJ mol-1).
Helium memiliki struktur 1s2. Elektron dilepaskan dari orbital yang sama seperti pada contoh hidrogen. Elektronnya dekat dengan inti dan tidak tersaring. Energi ionisasinya (2370 kJ mol-1) lebih besar dari hidrogen, karena elektronnya ditarik oleh dua proton pada inti, bukan satu seperti pada hidrogen.
Litium memiliki struktur 1s22s1. Elektron terluarnya berada pada tingkat energi kedua, lebih jauh dari inti. Anda mungkin berpendapat akan lebih dekat dengan adanya tambahan proton pada inti, tetapi elektron tidak mengalami tarikan yang penuh dari inti – tersaring oleh elektron 1s2.
Anda dapat membayangkan elektron seperti merasakan tarikan bersih +1 dari pusat (3 proton dikurangi oleh dua elektron 1s2 electrons).
Jika anda membandingkan litium dengan hidrogen (bukan dengan helium), elektron hidrogen juga mengalami tarikan 1+ dari inti, tetapi pada litium jaraknya lebih jauh. Energi ionisasi pertama litium turun menjadi 519 kJ mol-1 sedangkan hidrogen 1310 kJ mol-1.
Pola pada periode 2 dan 3
Membahas 17 atom pada saat bersamaan akan memakan waktu. Kita dapat melakukannya dengan lebih terarah dengan menjelaskan kecenderungan utama pada dua periode ini, dan kemudian menjelaskan pengecualian yang ada.
Secara umum pola pada kedua periode sama – perbedaannya energi ionisasi periode ketiga lebih rendah daripada periode kedua.
Menjelaskan kecenderungan umum pada periode 2 dan 3
Kecenderungan yang umum adalah energi ionisasi meningkat dalam satu periode dari kiri ke kanan.
Pada semua unsur periode 2, elektron terluar berada pada orbital tingkat 2 – 2s atau 2p. Semuanya memiliki jarak yang sama dari inti, dan tersaring oleh elektron 1s2.
Perbedaan pentingnya adalah terjadi kenaikan jumlah proton pada inti dari litium sampai neon. Hal itu menyebabkan makin kuatnya tarikan inti terhadap elektron sehingga menaikkan energi ionisasi. Pada kenyataannya kenaikan muatan inti menyebabkan elektron terluar lebih dekat ke inti. Kenaikan energi ionisasi itu berada dalam satu periode.
Pada periode 3, kecenderungannya sama. Semua elektron yang dilepaskan berada pada tingkat ketiga dan tersaring oleh elektron 1s22s22p6. Semuanya memiliki lingkungan yang sama, tetapi muatan intinya makin meningkat.
Mengapa terjadi penurunan antara golongan 2 dan 3 (Be-B dan Mg-Al)?
Penjelasannya didasarkan pada struktur boron dan aluminium. Elektron terluar kedua atom ini lebih mudah dilepaskan dibandingkan dengan kecenderungan umum pada atom-atom periode 2 dan 3 lainnya.
Be1s22s2E. I. pertama = 900 kJ mol-1
B1s22s22px1E. I. pertama = 799 kJ mol-1
Anda mungkin mengharapkan energi ionisasi boron lebih besar dari berilium karena adanya tambahan proton. Pada kenyataannya elektron terluar boron berada pada orbital 2p bukan pada 2s. Orbital 2p memiliki energi yang sedikit lebih tinggi daripada orbital 2s, dan elektronnya, rata-rata, berada lebih jauh dari inti. Hal ini memberikan dua pengaruh.
  • Bertambahnya jarak menghasilkan berkurangnya tarikan inti sehingga mengurangi energi ionisasi
  • Orbital 2p tidak hanya disaring oleh elektron 1s2 tetapi, sedikit, juga oleh elektron 2s2. Hal itu juga mengurangi tarikan dari inti sehingga energi ionisasinya lebih rendah.
Penjelasan terhadap turunnya energi ionisasi antara magnesium dan aluminium sama, hanya saja terjadi pada tingkat ke-3 bukan tingkat ke-2.
Mg1s22s22p63s2E. I. pertama = 736 kJ mol-1
Al1s22s22p63s23px1E. I. pertama = 577 kJ mol-1
Elektron 3p pada aluminium sedikit lebih jauh dari inti dibandingkan 3s, dan sebagian tersaring oleh elektron 3s2 sebagai elektron yang lebih dalam. Kedua faktor ini mengurangi pengaruh bertambahnya proton.
Mengapa terjadi penurunan diantara golongan 5 dan 6 (N-O dan P-S)?
Sekali lagi, anda mungkin mengharapkan energi ionisasi unsur golongan 6 akan lebih tinggi daripada golongan 5 karena adanya tambahan proton. Apa yang terjadi?
N1s22s22px12py12pz1E. I. pertama = 1400 kJ mol-1
O1s22s22px22py12pz1E. I. Pertama = 1310 kJ mol-1
Penyaringannya sama (oleh 1s2 dan, sedikit, oleh elektron 2s2), dan elektron dilepaskan dari orbital yang sama.
Perbedaannya adalah pada oksigen elektron dilepaskan dari salah satu pasangan 2px2. Adanya tolakan antara dua elektron pada orbital yang sama menyebabkan elektron tersebut lebih mudah dilepaskan dibandingkan yang lain.
Penurunan energi ionisasi pada sulfur dijelaskan dengan cara yang sama.
Kecenderungan turunnya energi ionisasi dalam satu golongan
Jika anda bergerak ke bawah dalam satu golongan pada tabel period ik, energi ionisasi secara umum akan menurun. Anda telah melihat bukti untuk hal ini bahwa energi ionisasi pada periode 3 lebih rendah dari periode 2.
Sebagai contoh pada golongan 1:
Mengapa energi ionisasi natrium lebih rendah dari litium?
Pada atom natrium terdapat 11 proton, tetapi pada atom litium hanya 3. Jadi muatan inti natrium lebih besar. Anda mungkin memperkirakan energi ionisasi natrium lebih besar, tetapi kenaikan muatan inti tidak dapat mengimbangi jarak elektron dari inti yang makin jauh dan lebih tersaring.
Li1s22s1E. I. pertama = 519 kJ mol-1
Na1s22s22p63s1E. I. pertama = 494 kJ mol-1
Elektron terluar litium berada pada tingkat kedua, dan hanya memiliki elektron 1s2 yang menyaringnya. Elektron 2s1 mengalami tarikan dari 3 proton dan disaring oleh 2 elektron – tarikan bersih dari pusat adalah +1.
Elektron terluar natrium berada pada tingkat 3, dan terhalangi dari 11 proton pada inti oleh 10 elektron yang berada lebih dalam. Elektron 3s1 juga mengalami tarikan bersih 1+ dari pusat atom. Faktor yang tersisa hanyalah jarak tambahan antara elektron terluar dan inti pada natrium. Sehingga energi ionisasi natrium lebih rendah.
Penjelasan yang sama berlaku jika anda bergerak ke bawah pada unsur lain pada golongan tersebut, atau, pada golongan yang lain.
Kecenderungan energi ionisasi pada golongan transisi
Selain seng pada bagian akhir, energi ionisasi semua unsur relatif sama.
Semua unsur memiliki struktur elektron [Ar]3dn4s2 (or 4s1 pada kromium dan tembaga). Elektron yang terlepas selalu dari orbital 4s.
Jika anda bergerak dari kiri ke kanan, dari satu atom ke atom lainnya dalam deretan golongan transisi, jumlah proton pada inti meningkat, elektron pada 3d juga bertambah. Elektron 3d mengalami beberapa pengaruh penyaringan, proton tambahan dan elektron 3d tambahan dapat menambah atau mengurangi pengaruh tarikan dari pusat atom yang diamati.
Kenaikan pada seng mudah untuk dijelaskan.
Cu[Ar]3d104s1E. I. pertama = 745 kJ mol-1
Zn[Ar]3d104s2E. I. pertama = 908 kJ mol-1
Pada contoh di atas, elektron yang dilepaskan berasal dari orbital yang sama, dengan penyaringan yang sama, tetapi seng memiliki satu tambahan proton pada inti sehingga daya tariknya lebih besar. Pada seng terdapat tolakan antar pasangan elektron orbital 4s, tetapi pada kasus ini tolakannya tidak cukup untuk mengimbangi pengaruh bertambahnya proton.
Energi ionisasi dan reaktivitas
Pada energi ionisasi yang lebih rendah, perubahan ini lebih mudah terjadi:
Anda dapat menjelaskan kenaikan reaktivitas logam golongan 1(Li, Na, K, Rb, Cs) dari atas ke bawah dalam satu golongan karena turunnya energi ionisasi. Bereaksi dengan apapun, logam-logam tersebut akan membentuk ion positif, dengan energi ionisasi yang lebih rendah, ion lebih mudah terbentuk.
Bahaya dari pendekatan ini adalah pembentukan ion positif terjadi hanya satu tahap dalam beberapa langkah proses.
Sebagai contoh, anda tidak mungkin memulai dengan atom gas; tidak juga mengakhirinya dengan gas ion positif – anda akan mengakhiri dengan ion dalam padatan atau larutan. Perubahan energi pada proses ini juga bervariasi dari satu unsur ke unsur lainnya. Secara ideal anda perlu mempertimbangkan semua hal dan tidak hanya mengambil sebagian saja.
Namun demikian, energi ionisasi unsur merupakan faktor utama yang berperan dalam energi aktivasi suatu reaksi. Ingat bahwa energi aktivasi merupakan energi minimum yang diperlukan sebelum reaksi berlangsung. Dengan energi aktivasi yang lebih rendah, reaksi akan lebih cepat – tanpa mengabaikan seluruh energi yang berubah pada reaksi tersebut.
Penurunan energi ionisasi dari atas ke bawah dalam satu golongan akan menyebabkan energi aktivasi lebih rendah dan reaksi menjadi lebih cepat.


Variasi sifat fisik pada perioda 3
Titik leleh dan titik didih
Saat ini kita akan menjelaskan semua hal yang mengalami peningkatan dan penurunan seperti yang digambarkan pada pada diagram.
Daya hantar listrik
Natrium, magnesium dan alumunium semuanya adalah konduktor listrik yang baik. Tidak satu pun dari sisanya menghantarkan listrik.
Penjelasan kecenderungan sifat
Tiga Struktur logam
Natrium, magnesium dan alumunium semuanya memiliki struktur logam, yang menentukan pada konduktifitas listriknya dan titik leleh dan titik didih yang relatif tinggi.
Titik leleh dan titik didih meningkat seiring dengan urutan logam karena kenaikan jumlah elektron yang mana tiap atom dapat mengkontribusikannya untuk mendelokaliasasi “lautan elektron”. Ukuran atomya juga lebih kecil dan memiliki lebih banyak proton seiring urutan dari natrium ke magnesium dan ke alumunium.
Daya tarik dan juga titik leleh dan titih didihnya meningkat karena:
  • Inti atom memperoleh lebih banyak muatan positif.
  • Lautan elektron menghasilkan muatan yang lebih negatif.
  • Lautan elektron lebih dekat ke inti dan karena itu tertarik lebih kuat.
Silikon – suatu struktur kovalen raksasa
Silikon adalah non logam, dan memiliki struktur kovalen raksasa sama persis dengan karbon pada intan – karena itu memiliki titik leleh tinggi. Kamu harus memutuskan ikatan kovalen terlebih dahulu untuk melelehkannya.
Tidak terdapat elektron bebas pada struktur, dan meskipun silikon dapat menghantarkan arus listrik, hal itu tidak sama dengan logam. Silikon adalah sebuah semikonduktor.
Empat unsur molekuler
Fosfor, belerang, klor dan argon adalah substansi melekuler sederhana dengan hanya memiliki dayatarik van der Waals diantara molekul-molekulnya. Titik leleh dan titik didihnya akan lebih kecil dibandingkan dengan anggota pertama perioda yang memiliki struktur raksasa. Keberadaan molekul yang menyendiri mencegah elektron untuk mengalir, dan tidak satupun dari keempat unsur tersebut yang dapat menghantarkan listrik.
Ukuran titik leleh dan titik didih ditentukan oleh ukuran molekul:
Molekul argon berada dalam bentuk atom argon tunggal.
Fosfor
Terdapat bentuk umum fosfor. Data pada diagram di atas berlaku untuk fosfor putih yang mengandung molekul P4. Untuk melelehkan fosfor kamu tidak perlu memutuskan satu ikatan kovalen pun – hanya terdapat gaya van der Waals yang lebih lemah.
Belerang
Belerang berada pada bentuk atom cincin S8. Molekulnya lebih besar dibandingkan molekul fosfor, dan karena itu dayatarik van der Waals akan lebih kuat, dan hal ini mengawali pada titik leleh dan titik didih yang lebih tinggi.
Klor
Klor, Cl2, merupakan molekul yang lebih kecil dengan dayatarik van der Waals yang lemah, dan karena itu klor akan memiliki titik leleh dan titik didih yang lebih rendah dibandingkan dengan belerang atau fosfor.
Argon
Molekul argon hanya terdiri dari atom argon tunggal, Ar. Kemungkinan dayatarik van der Waals sangat terbatas dan karena itu titik leleh dan titik didih argon lebih rendah lagi.


Perubahan keadaan sebagai acuan untuk gaya antara partikel
Susunan partikel pada padatan, cairan dan gas
Tinjauan sederhana mengenai susunan partikel pada padatan, cairan dan gas dapat dilihat seperti berikut ini:
Padatan
Pada padatan, partikel-partikel saling bersentuhan, dan satu-satunya pergerakan yang ada pada padatan adalah vibrasi. Partikel-partikel dapat tersusun secara teratur (pada kasus ini, padatan adalah kriatalin), atau tersusun secara acak (memberikan padatan melilin seperti lilin atau beberapa bentuk polietena, sebagai contohnya).
Partikel-partikel terikat pada padatan melalui gaya yang tergantung pada zat sesunguhnya – ikatan ionik, ikatan kovalen, ikatan hidrogen atau dayatarik van der Waals.
Pelelehan dan pembekuan
Jika energi diberikan melalui pemanasan padatan, energi kalor menyebabkan vibrasi yang lebih besar sampai akhirnya partikel terlepas dari partikel yang lain membentuk cairan. Energi kalor yang diperlukan untuk mengubah 1 mol padatan menjadi cairanan pada titik lelehnya disebut dengan entalpi peleburan entalpi fusi.
Ketika cairan membeku, terjadi kebalikannya. Pada temperatur yang sama, pergerakan partikel cukup lambat memaksa dayatarik untuk dapat mengikat partikel sebagai padatan. Selama pembentukan ikatan yang baru, melibatkan energi kalor.
Cairan
Pada cairan, kebanyakan partikel-partikel cairan tersebut saling bersentuhan, tetapi terdapat beberapa perbedaan yang muncul pada struktur. Perbedaan ini mengakibatkan partikel untuk bergerak, dan karena itu partikel tersusun secara acak. Kecuali pelelehan yang memutuskan ikatan zat yang hanya memiliki ikatan kovalen (sebuah struktur kovalen raksasa), gaya yang mengikat partikel padatan juga terdapat pada cairan tetapi kadang kala dalam bentuk yang longgar.
Pendidihan dan pengkondensasian
Jika energi yang diberikan lebih banyak, partikel-partikel bergerak cepat untuk memutuskan semua dayatarik antara partikel-partikelnya dan cairan mendidih. Energi kalor yang diperlukan untuk mengubah 1 mol cairan menjadi gas pada titik didihnya disebut dengan entalpi penguapan entalpi vaporasi
Jika gas didinginkan, pada beberapa temperatur partikel gas bergerak cukup lambat untuk memaksa dayatarik yang cukup efektif untuk mengkondensasi gas tersebut menjadi cairan. Sekali lagi, gaya tersebut dikembalikan, maka energi kalor dilepaskan.
Ingat:  Pemutusan ikatan membutuhkan energi, pembentukan ikatan melepaskan energi.

Gas
Pada gas, partikel-partikel bergerak bebas. Pada kondisi tekanan yang biasa, jarak antara masing-masing partikel adalah 10 kali diameter partikel. Pada jarak tersebut, setiap dayatarik antar partikel dapat diabaikan.
Penentuan tipe ikatan dari sifat fisik
Keadaan fisik dan sifat yang lain
Tempat terbaik untuk memulainya adalah selalu pada keadaan fisik.
Titik leleh tidak selalu merupakan acuan yang baik untuk ukuran dayatarik antara partikel, karena dayatarik tersebut hanya menghilang pada saat meleleh – tidak putus sama sekali. Titik didih adalah acuan yang lebih baik, karena kalor yang cukup diberikan untuk memutuskan gaya tarik secara sempurna. Dayatarik yang lebih besar, titik didih lebih tinggi.
Dapat dikatakan, titik leleh lebih sering digunakan untuk menentukan ukuran gaya tarik antara partikel pada padatan, tetapi anda kadang-kadang akan menemukan keanehan. Keanehan tersebut akan menghilang jika anda mempertimbangkan titik didih.
Sebagai contoh:  anda akan mengira bahwa ikatan logam pada alumunium lebih kuat dibandingkan pada magnesium, karena alumunium memiliki 3 elektron untuk didelokalisasikan pada "lautan elektron" dibandingkan dua elektron kepunyaan magnesium. Titik didihnya: Al 2470°C, Mg 1110°C. Walaupun, titik leleh alumunium hanya 10°C ebih tinggi dibandingkan dengan magnesium: Al 660°C, Mg 650°C.
Jadi, jika substansi tersebut suatu gas, cairan atau padatan dengan titik didih rendah, substansi tersebut akan ada sebagai molekul yang berikatan kovalen (kecuali gas mulia yang memiliki molekul berupa atom tunggal).
Ukuran titik leleh atau titik didih memberikan acuan pada kekuatan gaya antarmolekul. Jika substansi tersebut juga larut dalam air (tanpa bereaksi), hal tersebut memberikan molekul kecil memperoleh ikatan hidrogen – atau, setidaknya, molekul kecil yang bersifat sangat polar).
Jika substansi tersebut merupakan padatan bertitik didih tinggi, substansi tersebut akan menjadi struktur raksasa – baik itu ionik, logam atau kovalen raksasa.
Kelarutan dalam air (tanpa reaksi) menunjukkan substansi tersebut bersifat ionik. Jika substansi juga mengalami elektrolisis ketika melebur, hal tersebut mengkonfirmasikan bahwa substansi tersebut bersifat ionik.
Catatan:  Elektrolisis adalah pemisahan senyawa dengan menggunakan listrik. Sebagai contoh, lelehan natrium klorida menghantarkan listrik dan memisahkan natrium dan klor pada prosesnya.

Daya hantar listrik pada tingkat padatan menghasilkan elektron yang terdelokalisasi, dan karena itu terjadi pada logam atau grafit. Kuncinya akan diperoleh dari data – tampilan sifat dapat ditempa, dan lain-lain.
Catatan:  Semikonduktor seperti silikon – suatu struktur kovalen raksasa dengan susunan atom yang sama dengan intan – juga menghantarkan listrik.Teori semikonduktor terdapat pada A’level syllabuses.

1 komentar: